Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clin Infect Dis ; 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-2316602

ABSTRACT

Following SARS-CoV-2 infection, subsequent ChAdOx1 nCoV-19 induced similar neutralizing antibody levels against the original strain but significantly higher levels against the Omicron variant compared to those who were not vaccinated. Prior SARS-CoV-2 infection exhibited higher neutralization antibody titers than vaccination alone for both original strains and the Omicron variant.

2.
Vaccines (Basel) ; 10(11)2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2099907

ABSTRACT

During the COVID-19 pandemic, vaccines were developed based on various platform technologies and were approved for emergency use. However, the comparative analysis of immunogenicity and durability of vaccine-induced antibody responses depending on vaccine platforms or vaccination regimens has not been thoroughly examined for mRNA- or viral vector-based vaccines. In this study, we assessed spike-binding IgG levels and neutralizing capacity in 66 vaccinated individuals prime-boost immunized either by homologous (BNT162b2-BNT162b2 or ChAdOx1-ChAdOx1) or heterologous (ChAdOx1-BNT162b2) vaccination for six months after the first vaccination. Despite the discrepancy in intervals for the prime-boost vaccination regimen of different COVID-19 vaccines, we found stronger induction and relatively rapid waning of antibody responses by homologous vaccination of the mRNA vaccine, while weaker boost effect and stable maintenance of humoral immune responses were observed in the viral vector vaccine group over 6 months. Heterologous vaccination with ChAdOx1 and BNT162b2 resulted in an effective boost effect with the highest remaining antibody responses at six months post-primary vaccination.

4.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1987897

ABSTRACT

In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.

6.
J Infect Dis ; 225(5): 777-784, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1722482

ABSTRACT

BACKGROUND: There are limited data directly comparing immune responses to vaccines and to natural infections with coronavirus disease 2019 (COVID-19). This study assessed the immunogenicity of the BNT162b2 and ChAdOx1 nCoV-19 vaccines over a 3-month period and compared the immune responses with those to natural infections. METHOD: We enrolled healthcare workers who received BNT162b2 or ChAdOx1 nCoV-19 vaccines and patients with confirmed COVID-19 and then measured S1 immunoglobulin (Ig) G and neutralizing antibodies and T-cell responses. RESULTS: A total of 121 vaccinees and 26 patients with confirmed COVID-19 were analyzed. After the second dose, the BNT162b2 vaccine yielded S1 IgG antibody responses similar to those achieved with natural infections (mean IgG titer [standard deviation], 2241 [899] vs 2601 [5039]; P = .68) but significantly stronger than responses to the ChAdOx1 vaccine (174 [96]; P < .001). The neutralizing antibody titer generated by BNT162b2 was 6-fold higher than that generated by ChAdOx1 but lower than that by natural infection. T-cell responses persisted for 3 months with BNT162b2 and natural infection but decreased with ChAdOx1. CONCLUSIONS: Antibody responses after the second dose of BNT162b2 are higher than after the second dose of ChAdOx1 and like those occurring after natural infection. T-cell responses are maintained longer in BNT162b2 vaccinees than in ChAdOx1 vaccinees.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/immunology , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/adverse effects , Female , Humans , Immunoglobulin G , Male , Middle Aged , Vaccination
7.
Immune Netw ; 21(6): e41, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1704288

ABSTRACT

Correlation between vaccine reactogenicity and immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Thus, we investigated to determine whether the reactogenicity after coronavirus disease 2019 vaccination is associated with antibody (Ab) titers and T cell responses. This study was prospective cohort study done with 131 healthcare workers at tertiary center in Seoul, South Korea. The degrees of the local reactions after the 1st and 2nd doses of ChAdOx1 nCov-19 (ChAdOx1) vaccination were significantly associated with the S1-specific IgG Ab titers (p=0.003 and 0.01, respectively) and neutralizing Ab (p=0.04 and 0.10, respectively) in age- and sex-adjusted multivariate analysis, whereas those after the BNT162b2 vaccination did not show significant associations. T cell responses did not show significant associations with the degree of reactogenicity after the ChAdOx1 vaccination or the BNT162b2 vaccination. Thus, high degree of local reactogenicity after the ChAdOx1 vaccine may be used as an indicator of strong humoral immune responses against SARS-CoV-2.

8.
Immune Netw ; 21(4): e29, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1399492

ABSTRACT

There are limited data directly comparing humoral and T cell responses to the ChAdOx1 nCoV-19 and BNT162b2 vaccines. We compared Ab and T cell responses after first doses of ChAdOx1 nCoV-19 vs. BNT162b2 vaccines. We enrolled healthcare workers who received ChAdOx1 nCoV-19 or BNT162b2 vaccine in Seoul, Korea. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein-specific IgG Abs (S1-IgG), neutralizing Abs (NT Abs), and SARS-CoV-2-specific T cell response were evaluated before vaccination and at 1-wk intervals for 3 wks after vaccination. A total of 76 persons, comprising 40 injected with the ChAdOx1 vaccine and 36 injected with the BNT162b2 vaccine, participated in this study. At 3 wks after vaccination, the mean levels (±SD) of S1-IgG and NT Abs in the BNT162b2 participants were significantly higher than in the ChAdOx1 participants (S1-IgG, 14.03±7.20 vs. 6.28±8.87, p<0.0001; NT Ab, 183.1±155.6 vs. 116.6±116.2, p=0.035), respectively. However, the mean values of the T cell responses in the 2 groups were comparable after 2 wks. The humoral immune response after the 1st dose of BNT162b2 developed faster and was stronger than after the 1st dose of ChAdOx1. However, the T cell responses to BNT162b2 and ChAdOx1 were similar.

9.
JHEP Rep ; 3(4): 100296, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1293968

ABSTRACT

BACKGROUND & AIMS: Chronic hepatitis B is an incurable disease. Addressing the unmet medical need for therapies has been hampered by a lack of suitable cell culture models to investigate the HBV life cycle in a single experimental setup. We sought to develop a platform suitable to investigate all aspects of the entire HBV life cycle. METHODS: HepG2-NTCPsec+ cells were inoculated with HBV. Supernatants of infected cells were transferred to naïve cells. Inhibition of infection was determined in primary and secondary infected cells by high-content imaging of viral and cellular factors. Novel antivirals were triaged in cells infected with cell culture- or patient-derived HBV and in stably virus replicating cells. HBV internalisation and target-based receptor binding assays were conducted. RESULTS: We developed an HBV platform, screened 2,102 drugs and bioactives, and identified 3 early and 38 late novel HBV life cycle inhibitors using infectious HBV genotype D. Two early inhibitors, pranlukast (EC50 4.3 µM; 50% cytotoxic concentration [CC50] >50 µM) and cytochalasin D (EC50 0.07 µM; CC50 >50 µM), and 2 late inhibitors, fludarabine (EC50 0.1 µM; CC50 13.4 µM) and dexmedetomidine (EC50 6.2 µM; CC50 >50 µM), were further investigated. Pranlukast inhibited HBV preS1 binding, whereas cytochalasin D prevented the internalisation of HBV. Fludarabine inhibited the secretion of HBV progeny DNA, whereas dexmedetomidine interfered with the infectivity of HBV progeny. Patient-derived HBV genotype C was efficiently inhibited by fludarabine (EC50 0.08 µM) and dexmedetomidine (EC50 8.7 µM). CONCLUSIONS: The newly developed high-content assay is suitable to screen large-scale drug libraries, enables monitoring of the entire HBV life cycle, and discriminates between inhibition of early and late viral life cycle events. LAY SUMMARY: HBV infection is an incurable, chronic disease with few available treatments. Addressing this unmet medical need has been hampered by a lack of suitable cell culture models to study the entire viral life cycle in a single experimental setup. We developed an image-based approach suitable to screen large numbers of drugs, using a cell line that can be infected by HBV and produces large amounts of virus particles. By transferring viral supernatants from these infected cells to uninfected target cells, we could monitor the entire viral life cycle. We used this system to screen drug libraries and identified novel anti-HBV inhibitors that potently inhibit HBV in various phases of its life cycle. This assay will be an important new tool to study the HBV life cycle and accelerate the development of novel therapeutic strategies.

10.
Antimicrob Agents Chemother ; 64(7)2020 06 23.
Article in English | MEDLINE | ID: covidwho-191429

ABSTRACT

Drug repositioning is the only feasible option to immediately address the COVID-19 global challenge. We screened a panel of 48 FDA-approved drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which were preselected by an assay of SARS-CoV. We identified 24 potential antiviral drug candidates against SARS-CoV-2 infection. Some drug candidates showed very low 50% inhibitory concentrations (IC50s), and in particular, two FDA-approved drugs-niclosamide and ciclesonide-were notable in some respects.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Niclosamide/pharmacology , Pneumonia, Viral/drug therapy , Pregnenediones/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical/methods , Humans , Pandemics , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL